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ABSTRACT

Expressions to describe fringe contours in the re-

gion of interferenc e of two coherent beams are derived

for three combinations of plane and spherical wave geo-

metries. The fringe contrast ratio is shown to be spa-

tially variable ‘whenever spherical wavefronts are in-

volved and can be con trolled by altering the reference

to signal beam intensity ratio . These expressions ‘~an

be applied during the fabrication of matched filters

or holographic lenses.
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INTRODUCTION

Interference fr inge pat terns  are the means w i t h

which optical ‘wavefront information is recorded and

stored in applications of holography ,  matched filter-

ing, and in optical component testing with interfero-

metric techniques . Consequently,  an unders tanding of

fringe pattern properties obtained ‘with several rudi-

mentary geometric systems is of prac tical value in de-

vising test techniques , as well as in fostering an

understanding of more complicated geometries. These

are of more than academic interest; the setups are

used in such applications as beam collimation checks and

holographic lens preparation . Fringe characteristics L

are influenced by several factors: relative intensities

of the signal and reference beams ; orientations; wave-

length; coherence; state of polarization ; and beam

motion or environment-induced optical path length

changes . We are concerned primarily with the first two

significant factors in this note . Other items , namely

the influence of coherence on fringe visibility (Refs. 1

and 2) the effects of intentiona l motion or path length
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changes (Ref .  3) ,  and methods to a l leviate  the adverse

e f f e c t s  of unwanted motion and techniques to s tab i l i ze

fr inge recording systems (Ref .  4) have been discussed

in the literature as noted. Wavelength is assumed to

be cons tant .  Also , the inf luence of the photograp hic

recording technique is not considered.

The in tent  c’f this  note is to determine the in-

ter ference  fr inge pat tern  character is t ics  that  are ob-

tained wi th  combined p lane wave and spherical wave c~eo-

met r ies .  Three fundamenta l  arrangements are considered:

the in terference of two plane wave s , of a plane and a

spherical  wave , and of two spherical waves. In a l l

three cases we find an equation for the light  i n t ens i ty

distribution in a plane in the region of beam over lap,

determine contours of intensity maxima and minima in

this plane (i.e., fringe geometry), and contrast ratios .

The contrast ratio is shown to be variable across the

interference or recording plane whenever a spherical

wave is used , and can be easily optimized.

2
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BASIC NOTATION

Figure 1 shows a signal beam and a reference beam

incident upon the p lanar surface of a holographic re-

cording or in ter fe rometer observa tion plan e loca ted in

the region of interference. The origin of a coordinate

system is located in th is plane and is oriented for

convenience so tha t  the x , z-p lane is in the p lane of

incidence , as i l l u s t r a t e d . The y-axis is directed

normal to the plane of the figure . The z-axis is also

called the optic axis. The angles of incidence for

reference and signa l beams are labe led i!
R 

and

respect ively. Fox’ our pur poses , these angles of m ci-

dence are measured with respect to a direction paralle l

to the optic or z-axis. Note that the inciden t anc~le

is constant for each ray of light in a collimated beam

with planar wavefronts . On the other hand , the m ci-

dent ang le for each light ray in a spherically diverg-

ing beam (or in general, a nonpianar wavefront) varies

wi th each ray path . This ray path variation coupled

with an arbitrary placement of a recording plane ac-

count for the wide variations in fringe characteristics. 
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It is conventional to describe the amplitude of an

optical signal in exponential form explicitly omitting

the exponential time factor , exp(jut). This can be

done since the time factor is common to both ligh t beams

(i.e., the beams are temporally coherent). The spatial

dependence of the reference beam amplitude is written as

R(x,y,z) = R exp (jksr
(1)

= R exp{jk(p x + q y  + mrz)]

Here, R0 represents the magnitude of the complex ref-

erence beam amplitude , k = 2ii-/?~ where ?~ is the wave-

length , 5r is a unit vector in the direction of propa-

gation of the reference beam , and r is a position vec-

tor to the point at ‘which the reference beam amplitude

function is measured. The direction cosines of the unit

vector 5r are 
~r’ ~~~ 

and mr, and the components

of the position vector r are x, y, and z. Note

that the reference beam intensity is given by

[R(x,y,z) R*(x,y,z)] = R~ where the * denotes corn-

plex conjugate. If the reference beam is a plane wave

then R0 is a constant independent of position [other-

wise one has , in general ,. R0 
= R

0(x,y,z)
’l . Quantities

in the exponent of Eq. (1) determine the phase in terms

4
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of the components of and r. The unit vector

is constant for a p lane wave and spatial ly variable for

other wavefronts .

If the reference beam is a plane wave we shall de-

note its amplitude by Eq. (1). However, for a reference

beam with spherical wavefront, we use the expression

R(x,y,z) = (const/p) exp(jkp) (2)

where p represents the distance fran a point source

(origin of the spherical wavefront) to any given point

in space . Since the unit propagation vector in this

case is a radial vec tor , tt’~e phase term is kp; i.e.,

surfaces of constant phase are spheres for which ~ =

cons t.

The signal beam is either a plane or spherical

wave and therefore expressed by

S(x,y,z) = S exp(jks • r + ~
) (3)

or

S(x,y,z) = (const/p) exp(jk~ + j t )  (4)

in analogy with Eqs. (1) and (2). The unit vector in

the direction of propagation is now labeled s. For

generality, the quantity ~ represen ts a cons tan t

phase difference between both beams (i.e., the refer-

5 
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ence and signal beam s are usual ly derived from a c ommon

source).

In the region of beam overlap the resultant beam

amplitude is just the sum

A (x,y, z) = R(x ,y, z) + S(x ,y, z) ( 5)

and the corresp onding light intensity at points in the

three dimensional region of interference is given by

I(x,y,z) = A(x ,y, z) . A *(x,y, z)
(6)

* * * *= RR + SS + RS + SR

INTE RFE RE NCE OF TWO PLANE WAVE S

Figure 2 illus tra tes the overl ap and interf erenc e

of two plane waves. Let the direction cosines of the

uni t vec tor s f or the p lane wave signa l beam be

written as p, q, and m. Then , from Eq. (3) one has

S(x ,y , z) = S exp[jk(px + qy + mz) + ~~ (7)

In the region of beam overlap , the light  intensity dis-

tribution in the interferenc e pattern is obtained from

Eqs . (1), (6), and (7). One has

I(x ,y, z) = R~ + S~ + 2R0S0 cos [kr (s - 

~~ 
+ ~] (8)

6
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where

r (s - S
r) 

= - 

~~~~ 
+ (q - 

~~)Y + (m - mr )z (9)

Note that the intensity pattern of Eq. (8) is con-

stan t for regions in space where the argumen t of the

cosine function is constant , i.e., along planes in

spa ce des cribed by the equa t ion

r - Sr) = constant (9a)

Since both propagation vectors s and 5r lie in

the p lane of incide nce , then q = 0 = 
~~~~~~~ 

Fur thermore ,

in the observation or holographic recording plane one

has z = 0. Thus the intens ity distribution in th is

plane becomes , using Eqs. (8) and (9)

I(x,y, O) = R2 + ~2 + 2RS coslk (p - Pr)x + ~
] (10)

This well  know n in tens i ty  profile is illustrated in

Fig . 3. The intensity curve is periodic in terms of

the  x-variable . Clearly the maxima and minima values

for I(x , y , O) occur at x-values  for which  the cosine

term is ±1, respe ct ive ly, i.e., the argumen t of the

cosine term is an even or odd multip le of ir. Spe-

cifi call y, intensi ty maxima occur when

k(p - 

~
)
r)Xmax + t = 2n’rr , n = 0 , ±1, ±2,

(11)

7
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and in tens i ty  minima when

k(p - pr)xmin + ~ = (2n + l)~ (12)

The interference fringe lines (corresponding to equal

intensity contours) appear as a family of straight

lines parallel to the y-axis.

The fringe line spacing or spatial period is from

ei ther  Eq.  (11) or Eq .  (12)

= - 

~~~ 
(13)

For example , if the reference beam propagation is in

the z-direction , then 
~
1’r 0, and consequently

= sin 
~r 

= 0. Thus p = sin and

= ?~/sin ~j i  (14)

If both reference and signal beams are symmetrically

oriented about the z-axis , then 
~r 

= = - sin

and the fringe spac ing is obtained from

= 7~/2 sin ~ (15)

Finally,  for  any arbitrary pair of beam orientations in

the plane of incidence, the fringe separati’~”~ follows

from Eq. (13)

L\x = ~/(sin “
~~ 

± sin “ r~ 
(16)

The positive sign is used when the reference beam inci-

dent angle is oriented opposite to the signa l beam ang

le8



(as shown in Fig . 2 ) ;  the negative sig~i is used when

both incident angles are oriented in the same angular

direction from t h e  optic axis . Fringe separations de-

picting Eqs . (14) and (15) are summarized in Fig . 4.

It is of interest to note that for certain cases fringe

spacings for the asymmetrical case described by Eq. (16)

are those values which are bounded by the two illu s-

trated curves (e.g., if the angles are oppositely

orien ted and 
~r 

<

The contrast ratio is a ~figure of merit” of the

fr inge pattern that describes the depth of modulation

for the sinusoidal fringe pattern previously illus trated

in Fig. 3. The contrast ratio is defined as ’

I - I .max mm

~R I  + 1 .max mm

where I refers to the maximum intensity value inmax

the in ter ference  pat tern  and is given by (R 0 + S~)
2
.

* h def in i t ions  use C = I /1 . as the contrastR max mm

ratio for images and , hence , the photographic result

of record ing the fringes. Also (I - I . ) ismax mm

often called the depth of modulation .

9
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Thus , the contrast ratio can be written as

C = 

(R0 + S ~ ) 2 - (R0 - s22~:. (18)
(R + S ) + (R - S )

0 0 0 0

Defining the beam ratio as

R — 
Reference Beam Intensity 

=— Signal Beam Intensi ty  -

0

we obtain

2~ J R
CR

_
l + R

A plot of the contrast ratio as a function of the

beam ra tio given by Eq. (19) is shown in Fig. 5, as the

curve marked ~ = 0. CR 
has a maximum value of unit1

at R = 1, and for the case of two interfering plane

waves , is constant across a recording plane .

As a practical i l lus tra t ion , the shearing inter-

ferometric method for establishing a collimated beam

invo lves the interference of two plane waves. The

shearing interferome ter consists of a slightly wedged

optical flat mounted so that the plane of the wedge

angle is perpendicular to the plane of the mountir g

base (see Fi g. 6 ) .  A s t raight  wire is o f t en  moun ted

across the face of the flat and set parallel to the

•

10 
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*base plane as a fringe reference.

The collimated beam condition is illustrated in

Fig . 6. The collimated beam is divided into two beams ,

one as a reflection from the front surface , the other a

rear surface reflection . Both reflected beams travel

at a slight angle and form interference fringes. These

fringes will be parallel to the reference wire (and

themselves) when the incident beam is collimated. Al-

ternately, the ability to form a straight line fringe

fie ld is usefu l as a visual  check on the “quality” of

the collimation . One could also use this interferenc e

fr inge pa t te rn  in another way , i.e ., to determine the

wedge angle , assuming the incident beam to be colli-

mated.

INTERFERENCE OF A PLANE AND SPHERICAL WAVE

The optical setup to achieve the interference of a

plane and spherical wave is shown in Fig . 7. For gen-

erality, we locate the point source of the spherical

wave at the position (a ,b ,c) with respec t to an arbi-

trarily chosen coordinate origin. Two cases of interest

*A shearing interferometer is manufactured by the Conti-

nental Optical Corporation , Hauppauge , New York 11787.

11



to be discussed are characterized by plac ing the poin t

source of light of the spherical wave on the system

optic or z-axis , or alternately placing the point

source off  the z-axis.  The angular or ientat ion of

the plane wave is arbitrary .

The distance from the point source to any other

poin t in space is given by

p = [(x - a)
2 
+ (y - b)2 + (z - c)2 (20)

The beam amplitudes , given by Eqs. (1) and (4), are

summed and the net beam intensity in the three dimen-

sional region of overlap is found to be

I(x ,y,z) = R~ + S
2/ø 2

(21)

+ (2SR 0/p )  cos.~
’
k(p  - 5r 

. r) +

(Note that the reference beam phase is assun~ d to be

zero at  the arbi t rary  ori gin.)

The condit ions for  maximum and minimum in tens i ty

values are again obtained by setting the argument of the

cosine function equal to an even or odd multiple of ~ir ,

respectively.  Thus , for a maximum resu l t an t  i n t e n s i t y

one requires that

12



I

k(p - 5r r) + ~ = 2n~ , ii = 0, ±1, ±2, ...
(22)

and for  a minimum one requires

k(p - . r) + ~ = (2n + l)7r , n = 0 , ±1, ±2,

(23)

To demonstrate the geometrical properties of the

interference fringe patterns described by Eqs. (22) and

(23) we introduce the quant i ty

= - 5r r (24)

where 
~ 

= (2n’ir - ~)/k or [(2n + l)7r - 
~]/k from

Eqs . (22) and (23), respect ively. In terms of the di-

rection costhes for the p lane wave , one has

P = PrX + + mr z + 
~~~~ 

(25)

Squaring both sides of Eq. (25) and combining with

Eq . (20) leads to

(1 - p~)x
2 
+ (1 - q~)y

2 
+ (1 -

- 2(a + Pren)~
( - 2(b + q~~t )y - 2(c + mr~n

)z

(26)
- 2p~q~xy - 2q~m~yz - 2prmr~~

2 2 2 2
= 

n 
- (a 4 h + c )

___________  ______  
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_
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This result is in the form of an equation for a family

of ellipsoidal surfaces in space. These surfaces are

equiphase surfaces for the maximum or minimum intensi-

ties as the case may be , but the intensity pattern is

not necessarily uniform on a given ellipsoidal surface

because of the factors l/~~, 1/p
2 

in the intensity, see

Eq. (21). Consequently the intensity does , in general ,

depend upon the radial distance ~~~~. It is clear then

that the surfaces of equal visibility are nonplanar (as

was the case with two interfering plane waves).

Let an observation (or recording) plane be described

by the linear equation

Ax + B y + C z = D  ( 2 7 )

In this p lane , the interference fringes form a series

of elliptical shapes. This can be demonstrated by

solving Eq. (27) for the quantity z and substituting

the result into Eq. (26), i.e., finding the intersection

of an ellipsoid and a plane . The resultant equation is

quadrat .c in x and y and is of the form oF a family

of ellipse contours in the observation plane. As noted

above there will be a variation in fringe visibility in

this plane .

14



Two specific cases are of practical interest. First

assume that the reference beam is oriented such that the

direction cosine q = 0 and tha t z = 0 in the observa-r

tion plane . Equation (26) then reduces to

(1 - p2)x2 + y2 - 2(a + Pr~
I
n)X 

- 2by

(28)
2 2 2 2= I - ( a  + b  + c )

which is representative of a family of ellipses in this

specific observation plane . Since 1 - p
~ ~. 1 th2

semimajor axis is oriented parallel to the x-axis.

Once cgain the fringe spacing is not constant over the

plane of in terference.

As a second examp le , assume that the reference beam

is directed along the z-axis. For this specia l orienta-

tion the direction cosine 1
~r 

= 0 as well. Thus ,

Eq. (28) reduces to

x2 + y 2 - 2ax - 2by = - (a
2 + b2 + c2)

or

(x - a)2 + (y - b)
2 

= - c
2 

(29)

The in te r fe rence  f r inge pa t te rn  consis ts  of a famil y of

concentric circles in the observation plane that are

centered about the poin t (a, b). For convenience one

15
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can take a = 0 = b to simplify the above results .

We can readily estimate the fringe spacing for this

case. For example , intensity maxima are located at p0-

sitions where kp = 2nw - 
~~~~, from Eq . (22). The

change in p for consecutive n-va lues is

Ap = ~ {(2(n + l)~ - - (2n~ - = = ~ (30)

If r = Jx2 + y2 is the polar coordinate in the observa-

tion p lane wh ere z = 0 then , from Eq. (20)

(31)

The fringe separation in the observation p1a~e is ap-

proximated by

Ar ~ ~~p/r = A + c2/r2 .~~~~~ = ~1l + c
2/r2 ~ (32)

The fringes appear as a family of circular rings , h ow-

ever the f r inge  spac ing ~r is not constant; rather it

decreases for increasing r-values  as indicated by

Eq. (32).

The (relative) maximum value of the light intensity

in the plane of observation is from Eqs. (21) and (22)

I R2 + S~ /~~ + 2SR /c = (R + S
2
/p )

2 
(33)max o max o max o max

The (relative) minimum value is from Eqs. (21) and (23)

16
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~min = R2 + S2/p~~~ - 2SR /p . = (R0 
- S/cmin)

2 
(34 k

Thus the contrast ratio , defined by Eq. (17), can be

written as

(R + S/p )
2 

- (R0 - 
S / c . )

2

R 
(R + s/ )

2 + (R - S/~ )
2

o max o mm

For regions of the interference fringe pattern

where the fringe spacing is small compared to the dis-

tance to the source , one can approximate

I ’ 
‘

~~ c/cos (36)max n u n

where E? is the ang le be tween the  optic axis and the

line segment joining the point source and a typical oh-

servation point in the vicinity of p or p .max mm

With this approximation the contrast ratio can be

written as

2 ‘
~~~~~ cos ‘~CR 

—

~~~~~~~

‘~ + cos~ “

where the beam ratio ~ is now defined as

CR 2

c =  (38)

Equation (37) demonstrates that with this plane wave-

spherical  wave geometry the con trast visibili ty varies

across the observation plane .

17

_ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—..‘.—.,.-——..—.. ._‘._._—_——.~..- — —,—.. .—_. .—.——...—.—

The plot of contrast ratio as a function of the

signal/reference beam ratio, previously i l lustra ted in

Fig. 5 for the case of two interfering plane waves, can

be used to portray the contrast ratio function of

Eq. (37). Define the “modified” beam ratio as

= ~ /cos~ e (39)

In terms of ~~~
‘
, Eq. (37) becomes

2~~~~~~~~~~~~~ (40)

which is of the same functional form as Eq. (19). Thus

Fig . 5 repre sents C~, in a condensed form as a function

of s~
’’
. The maximum contrast ratio C,~, = 1 only for

points in the observation plane where ~~
‘ = ~~/C OS

2 
~ = I

or equivalently,  where cos2G = ~~~. This is an important

result. It means that maximum contrast is obtained with

a beam ratio less than one ; quite different than the re-

quiremen t wi th two plane waves. The contrast ratio curve

is also illustrated for a particular value of e = 60°.

As a second practical example , consider the fabrica-

don of a high spatial frequency optical matched filter to

improve the signal - to-noise  ra t io .  Since the contrast ratio

is not constant , points near the center of the pattern have

higher contrast ratios than those of more remote points at

18
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higher spatial frequency values. One can envision compensa-

tion for this contrast fall-off in the filter plane to en-

hance favorably the higher spatial frequency signals (note

that the fall-off in response of film at higher spatial fre-

quencies further degrades contrast).

INTERFERENCE OF TWO SPHERICAL WAVE S

This beam configuration is illustrated in Fig . 8.

The point sources are located at distances d1 and d2

from the observation plane. The p lane of inc idence is

de term ined by these two poin t sources and the z or

optic axis . A coordinate system is centered between the

two point sources as indicated in the figure .

Let 
~ 

and 12 represent the distances from each

point source to a position in the region of interference.

Then

1 1 
= [(x - a)

2 
+ y

2 + (z + d1)
2

(41)

12 = J(x + a)2 + y2 + (z + d2)
2

Beam amplitudes in the observation plane are given by

~ 

— .~~~~~~ — . ,  

~~~~ 

. —

~~~~~~~

. 

~~~
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~~~~~~
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S1 jkp
1S1(x,y , o) = — ep 1

(42)

S 2 j(kp2 + ~
)

S2 (x ,y, o) = — ep2

wh ere S1, S2 ,  and ~ are cons tan ts. Conseq uen tly ,

the intensi ty profile of the combined beams reduces to
2 2
S1 ~2 

2S 1S2I + + ~~~~~ cos~k(p2 
- 

~~ 
+ ~~~~ (43)

~l ~2

The conditions for local extremum va lues of the in-

tensity dis tribut ion are given by

k(p2 
- p 1) + ~ = 2n7r (44)

for a maximum and

k( 12 
- p 1

) + ~ = (2n + l)rr (45)

for a minimum, where n = 0 , ±1, ±2 In the re-

gion of in terferen ce the fr inge con tours described by

E qs .  (44) and (45) are next  shown to be quadratic sur-

faces.

We set = (2nr - .r )/k for a maximum or c~ =n n
[(2n + 1)-n- - 4]/k for a minimum ; thus from either

Eqs . (44) or (45)

2 
- = 1

n (46)

20
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or

- = + ~~~~~ (47)

Using Eqs. (41), Eq. (47) reduces at first to

4x2 + [d~ - d~ 
- + 2(d 2 

- d1)z 
= 2 ‘n2l (48)

and f inally in terms of the x,y,z coordinates

(16a2 - 4 2)x 2 - 4 2y 2 + [4(d
2 

- d1)
2 

- 4~~ ]z 2

+ 8a(d~ - d~ )x + 4[(d - d
1)~ + 

2 i 2d1
]z (49)

+ l6a(d2 
- d1)xz + [

~~2 - 4.~
2
(a
2 + d~)] = 0

where

2 1 1n

Two interesting cases serve to illustrate the na-

ture of the f r ing  con tours. In the p lane z = 0,

Eq. (49) simpl i f ies to

2 2 2 2 2
(16a - 4’-1 )x - 4-~ yii n 

(50)

+ 8a(d~ - d~ )x + [~ 2 
- 4I 2(a

2 + d~)] = 0

Furthermore , if we consider  the arrangemen t for which

d1 
= d2 ,  then one has

(16a 2 
- 4~

2)x 2 - + ~~~~ - 4(a2 - d~ )J = 0

(51)
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If the coefficient of the x2 term is posi tive then

Eq. (51) represents a family of hyperbolic curve s in the

recording plane . On the other hand , if this coefficient

is negative then Eq. (51) represents a family of h yper-

bolic or elliptic cur ves depending upon the sign of the

las t, constant term in the equation .

As a fina l example let the two point sources lie on

the optic axis . Setting a = 0 in Eq. (41) yields

(52)
2 2 2

p2 
= x + y + d2

Squaring and sub trac ting results in
2 2 2 2

‘2 
- p1 

= d
2 

- d1 (53)

where we assume d2 > d1. From Eq.  (47) one has

- d~ = a
2 + 2 anpl (54)

or , in terms of the x ,y coordim tes , Eq. (54) reduces

to

2

2 2 2 1 n  2x + y  = 2 - d 1 (55)
4 an

Thus , the interference fringe patterns are circular ,

wi th a common cen ter loca ted a t the origin of coord i-

nates in the observation plane .

22



The con trast ra t io  for this two-spherical beam set-

up can be easily determined as

(2 ~2 ~l1 S . Th
C 

1 2 
(56)2

1+~~ -f i
~i 

p2

or, defining ~

2 ’v~ 7CR 
- 1 + ~

The contrast  ra t io  has the same func tion form as

in Eqs . (19) and (40) and depends upon the spatially

variable quant i ty  p 1/p 2 .

C ONC LUSION S

We have derived equations for the interference

fringe con tour f or combina tion s of p lane and spherical

waves in the volume of interference . Spherical wave-

fronts give rise to contrast ratios that are spatially

variable which can be a nonoptimum condition in record-

ing patterns. Control of the beam ratio can be effected

to provide the desired opt imized condi tions in holograph y,

ma tched f i l ter fabrica tion , or any particular applications .

23
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FIGURE S

1 Coordinate system and general  beam geometry

2 Interference of two plane waves

3 Intensity profile of the interference pattern

of two plane waves

4 Fringe separation as a function of plane wave

beam orientations

5 Contrast ratio as a function of beam ratio

6 Plane wave interference in a shearing

interferometer

7 Interference of a plane and sp’~erical wave

8 Interference of two spherical waves
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Fig. 3 Intensity profile of interfe rence
pattern of two plane waves
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